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Abstract—This paper reviews the importance of Kalman Filter for 
the process of Linear Filtering. Kalman Filtering is an algorithmic 
approach that solves the stabilization problems recursively to 
generate a statistically optimal estimate of the system. The problem 
associated with estimation is discussed first. This filter finds its 
application in the processes where the state of the system is to be 
tracked every time new measurements of the system position are 
taken. Some of the typical examples are quad copters, two wheel 
balancing system, velocity control of a satellite and navigation 
systems. 
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1. I NT R ODUC T I ON 

Estimation is the process of obtaining processed information 
that is to be used for carrying out a specific task. The 
processed information is obtained by applying some 
mathematical function on the input obtained from various 
sources along with previously stored data. Estimation is 
required because the input may be inconsistent- incomplete, 
uncertain or unstable. However the processed information 
obtained is usable because it is obtained from the best sources 
available. 

 

Fig. 1: The exact number of bricks in this truck cannot be 
determined by looking at it. The amount can be estimated by 
presuming that the portion of the truck that cannot be seen 
contains an amount equivalent to the amount contained in the 
same volume for portion that can be seen. 

An estimator is simply a mathematical function of the given 
data. The function can be a linear or a non linear function; it 
can be a biased or an unbiased function. In this paper, we 
intend to look for an estimate that is linear as well as unbiased. 

Currently we are working to implement this filtering algorithm 
in a project ‘Two wheel balancing robot’. In order to obtain 
the raw values of the system orientation, we are using a sensor 
‘MPU6050’ consisting of an accelerometer, gyroscope and a 
Digital Motion Processor(DMP) unit employing Kalman 
Filter. The filtered output from Kalman Filter wil be used as a 
feedback to our system.  

 

F ig. 2:  Project under  implementation 

Kalman Filter which is named after Hungarian born electrical 
engineer, Rudolf Emil Kalman is also known as Linear 
Quadratic Estimator (LQE). It solves the least square 
estimation problems recursively going through data one by 
one. That is the filter finds the new best estimate for a given 
set of data once a new measurement is added by using both the 
new measurement, old estimate and some measure of 
confidence in the old estimate [1].  
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2. PR OB L E M  ST A T E M E NT  

Since the initial condition for the system is random, the system 
state cannot be measured directly. It has to be estimated 
optimally from measurements. So there is a need to apply an 
estimator block that inputs ‘observed measurements’ and 
previously recorded information to generate ‘new best 
estimate’ for the system.  

 

F ig. 3:  B lock Diagr am for  the Process 

A linear system model is justifiable for a number of reasons. 
Often such a model is adequate for the purpose at hand, and 
when nonlinearities do exist, the typical engineering approach 
is to linearize about some nominal point of trajectory, 
achieving a perturbation model or error model. Linear systems 
are desirable in that they are more easily manipulated with 
engineering tools, and linear system (or differential equation) 
theory is much more complete and practical than nonlinear. 
The fact is that there are means of extending the Kalman filter 
concept to some nonlinear applications or developing 
nonlinear filters directly, but these are considered only if linear 
models prove inadequate [2]. 

3. T H E OR Y  OF  E ST I M A T I ON 

Let us consider a quantity Y that is unknown. Two 
independent pieces of information Y1 and Y2

Let us consider a quantity Y that is unknown. Two 
independent pieces of information Y

 are available 
about the quantity Y. 

1 and Y2 are available 
about the quantity Y. 

Mean of Y1 = E(Y1) = m 

Variance of Y1 = Var(Y1) = σ1
2 

Mean of Y2 = E(Y2) = m 

Variance of Y2 = Var(Y2) = σ2
2 

ŶLS = least square estimate of unknown Y 

Ŷ = any other estimate 

Then according to Gauss- Markov theorem, 

Covariance (ŶLS) ≤ Covariance (Ŷ) 

Where ŶLS and Ŷ are both linear and unbiased estimates. 

Let us assume: Ŷ =a1Y1+a2Y2  

this is a linear estimate in Y1 and Y2  

For any estimate to be unbiased the sum of coefficients should 
be 1. 

 i.e a1 + a2 =1 

 Var(Ŷ) = a1
2 σ1

2+a2
2 σ2

2 -- -----(1) 

It is required to find out the value of a1 such that Var(Ŷ)  is 
minimum.  

 
𝜕𝜕Var (Ŷ) 
𝜕𝜕a1

 = 2 a1 σ1
2 + 2(1-a1) (-1) (σ2

2) = 0 

a1 = σ2
2 / (σ1

2 + σ2
2) 

a2 = 1- a1 = σ1
2 / (σ1

2 + σ2
2) 

By substituting the values of a1 and a2 in equation1 and 
simplifying, 

Var(Ŷ) = σ1
2 σ2

2 / (σ1
2 + σ2

2) 

By observation it can be viewed that: 

  Var(Ŷ) ˂ σ1
2 

And Var(Ŷ) ˂ σ2
2 

this means that: Var(Ŷ) ˂ min{ σ1
2 , σ2

2

Hence Ŷ is a better estimate as compared to the individual 
data sets Y

 } 

1 or Y2 as variance of Ŷ is the least[6,7].  
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Now let us assume that Y1 is the background i.e. previously 
recorded information and Y2

We have two pieces of information and it has just been proved 
according to the theory of estimation that the linear unbiased 
estimate obtained from the combination of two or more 
information results is a better estimate. This is the reason, why 
Data Simulation is carried out. Kalman filter is based on this 
principle of estimation.  

 is the new observation. 

In a linear model for loss reserving, Gauss Markov prediction 
is the natural principle of prediction: It minimizes the mean 
squared error of prediction over the class of all unbiased linear 
predictors, and it provides exact formulas for predictors and 
their mean squared error of prediction. Another advantage of 

Gauss Markov prediction is in the fact that the Gauss Markov 
predictor of a sum is just the sum of the Gauss Markov 
predictors of the single terms of that sum such that essentially 
only the most elementary quantities have to be predicted. [5] 

4. K A L M A N F I L T E R I NG  PR OC E SS 

The filter is actually a data processing algorithm. Despite the 
typical connotation of the filter as a “black box” containing 
electrical networks, the fact is that in most practical 
applications, the “filter” is just a computer program in a 
central processor. As such, it inherently incorporates discrete 
time measurement samples rather than continuous time inputs 
[2]. 

 

F ig. 4:  B lock diagr am of K alman filter ing process [8] 

For linear system and white Gaussian errors, Kalman filter is 
“best” estimate based on all previous measurements. It does 
not need to store all previous measurements as it reprocesses 
all data at each time step. 

• Optimal estimate of position is: ŷ(t1) = z
• Variance of error in estimate: σ

1 
2

x
 (t1) = σ2

• Measurement at t
z1 

2: Mean = z2 and Variance = σ2

 
z2 

There is a need to correct the prediction due to measurement 
to get ŷ(t 2

 

). This is done by using Linear Estimation which 
gives corrected mean. Corrected mean is the new optimal 

estimate of position. New variance is smaller than either of the 
previous two variances [4].  

F ig. 5:  Predicted position[2] 

 

Fig. 6: Measured position[2] 

 

Fig. 7: Optimally estimated position [2] 
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The linear discrete Kalman filter can be used to estimate the 
state of a process for which information is constantly gathered 
or any problem where one wants to have a state estimate 
quickly, before all the information is processed. An example of 
the former is navigation, or weather prediction. In both of 
these cases we want ongoing solutions each time data is 
added. An example of an application where all the data is 
immediately available but not all of it is used right away is a 
quad copter or a two wheel balancing robot. In these cases, 
high speed estimation of the deviation of the assembly from 
the required coordinates is essential. The a priori state estimate 
given by the Kalman filter after only a few data points can be 
used to determine whether the position of the assembly should 
be updated or not [1,4].  

 

F ig. 8:  I mplementation diagr am of K alman F ilter  [3] 
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